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ABSTRACT: Terahertz subwavelength imaging aims at develop-
ing THz microscopes able to resolve deeply subwavelength
features. To beat the diffraction limit, the current trend is to use
various subwavelength probes to convert the near-field to the far-
field. These techniques offer significant gains in spatial resolution
but suffer from low light throughput and are slow due to the
necessity of a slow pixel-by-pixel raster scan. In parallel, in the
visible spectral range, super-resolution imaging techniques enhance
the image resolution by statistically correlating multiple frames of
an object backlit by stochastically blinking fluorophores. In this
work, we develop a super-resolution imaging technique for the
THz range, that we name super-resolution orthogonal deterministic imaging (SODI). Since there are no natural THz fluorophores,
we design artificial fluorophores in the form of optimal mask sets brought close to the object. By deterministically controlling the
blinking, we avoid statistical averages and reconstruct high resolution images using very few frames. After developing the theoretical
basis of SODI, we experimentally demonstrate the second-order resolution improvement using only eight phase and binary
amplitude masks. We then show how to extend the SODI technique to higher orders to further improve the resolution. Our
methodology can be readily adapted with existing THz phase-sensitive single-pixel imaging systems or any THz amplitude imaging
arrays. Finally, this work can be of interest to the optical community in other wavelengths, as our technique can be used to
deterministically structure light at a subwavelength scale in order to improve the image resolution with few frames and achieve real-
time super-resolution microscopy.
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Terahertz science and technology (0.1−10 THz, wave-
lengths of 3 mm to 30 μm) are now mature research

fields with many fundamental and practical applications in
sensing and imaging.1,2 THz subwavelength imaging, in
particular, aims at developing THz microscopes able to resolve
deeply subwavelength features.3 To improve the spatial
resolution beyond the diffraction limit, a current trend in the
THz research is to use various subwavelength probes, such as
apertures,4 metallic tips,5 solid immersion lenses,6 dielectric
cuboids,7 and so on that essentially facilitate the creation and
scattering of an evanescent subwavelength-sized near-field
probing wave into the far-field. While these techniques offer
significant gains in spatial resolution, they inherently lack the
ability to rapidly obtain THz images due to the necessity of
slow pixel-by-pixel raster scans and often long averaging times
caused by low measured signal intensities.
To overcome these challenges, several designs of sub-

wavelength imaging systems have been proposed, where the
sample is in direct contact with a multipixel detector for
parallel pixel acquisition. In one of these approaches, the
sample is brought in contact with a nonlinear crystal, which is
then used for two-dimensional electro-optic sampling with a
sensitive visible CCD camera.8,9 Recently, a fully integrated

THz near-field camera was developed where both the emitter
and the detector were fabricated on the same chip using a SiGe
heterojunction bipolar transistor technology.10 While promis-
ing, these techniques require direct physical contact between
the sample and the detector, which is practically inconvenient.
Computational imaging techniques have also been devel-

oped for applications in the terahertz range, including single-
pixel imaging and compressive sensing.11 There, a semi-
conductor substrate is used as a spatial light modulator when
optically pumped.12 Specially designed patterns obtained using
a digital micromirror device are then used as illumination
masks for imaging with single-pixel detectors. Moreover,
subwavelength imaging can be achieved by placing the sample
in direct contact with the mask, allowing to encode near-field
features in the reconstructed image.13,14
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In parallel, in the visible spectral range, several practically
important super-resolution imaging techniques have been
developed to beat the diffraction limit.15,16 These techniques
use temporally uncorrelated blinking fluorophores distributed
spatially as subwavelength probes, and they involve a
computational treatment of a collection of images (frames)
that represent snapshots of the target object backlit by
randomly blinking fluorophores. One of such techniques is
known as super-resolution optical fluctuation imaging
(SOFI).17,18 By assuming that the fluorescent labels switch
rapidly and stochastically between binary on/off states, a
higher-resolution image is reconstructed from a collection of
frames, using the statistics of cumulants. The key advantage of
this technique is that one forgoes the slow raster scanning with
subwavelength probes or image acquisition in the object near-
field while only collecting intensity images in the far-field. This
allows realizing super-resolution imaging using only far-field
acquisitions with amplitude-sensitive detector arrays (that are
now also available in the THz range19,20), which is both
practical and convenient in most industrial settings.
For these reasons, we explore in this paper the possibility of

adopting the SOFI technique to the THz spectral range. An
immediate problem that we face is the lack of natural
fluorophores in the THz range, with the exception of some
exotic atomic optical fluorescence.21 Nonetheless, since the
THz wavelengths are relatively large, we propose to use
optimal ensembles of “artificial blinking fluorophores” in the
form of judiciously designed amplitude or phase masks
brought in close proximity with the object. While in this
paper we fabricate both amplitude and phase masks using
etching and 3D printing techniques, amplitude masks can also
be realized dynamically via spatial light modulation, as used in
THz single-pixel imaging and compressive sensing.13 Impor-
tantly, since we directly control the form of the masks, rather
than relying on statistical averages of a large number of frames,
as it is done in SOFI, we rather aim at employing the smallest
possible number of optimally designed super-resolution masks
to reduce the number of frames necessary to deterministically
reconstruct the image. This is important, because limited frame
acquisition rate is one of the key challenges of the SOFI
technique even in the visible spectral range.
We also note that the proposed technique which we refer to

as Super-resolution Orthogonal Deterministic Imaging
(SODI), while superficially similar to compressive sensing, is
different from it conceptually and experimentally. Thus, in
compressive imaging one generates a number of masks that are
typically a fraction of the desired number of pixels,22,23 leading
to loss of information during the image reconstruction. A
single-pixel detector can be used within compressive sensing
technique. In contrast, within SODI, one uses the smallest
possible number of subwavelength-structured “orthogonal”
masks necessary for deterministic image reconstruction up to
any desired resolution order. Within SODI, a higher order of
the reconstruction means subwavelength resolution propor-
tional to the wavelength divided by the square root of the
order number, while the super-resolved imaging is recon-
structed without loss of information. Additionally, within
SODI, amplitude-sensitive (pyroelectric, bolometer, etc.) or
phase-sensitive (EOS/CCD) detector arrays can be used in the
far-field.
On the other hand, SODI employs an ensemble of masks

with subwavelength features and, in this respect, it bears
resemblance to techniques that employ near-field to far-field

conversion using subwavelength probes. That said, individual
masks in SODI show high light throughput (100% phase
masks and 50% amplitude masks), which is significantly higher
compared to other standard subwavelength probes such as
apertures and needles. Additionally, raster scanning of the
object with a subwavelength probe is replaced by consecutive
image acquisitions in the far-field using an ensemble of
optimally designed masks that cover the whole image.
The paper is organized as follows. First, we present a

theoretical foundation behind the SODI technique and detail
the design of optimal ensembles of amplitude and phase masks
that mimic sets of stochastically blinking fluorophores. Then,
we present an example of phase masks and demonstrate
experimental super-resolution imaging at the second order.
Next, we show how to modify the super-resolution algorithm
to be able to use binary amplitude (on/off) masks and again
demonstrate super-resolution imaging at the second order. We
then demonstrate how to improve the resolution further, by
providing algorithms for amplitude and phase mask design for
higher order super-resolution imaging. Finally, we discuss on
how the SODI algorithm can be used in existing THz imaging
modalities to increase their current resolutions.

■ SUPER-RESOLUTION RECONSTRUCTION USING
DETERMINISTIC FLUCTUATIONS, SECOND ORDER
FORMULATION

The following presentation is largely based on the
mathematical foundation behind the SOFI technique.17,18

Considering a linear imaging system, the measured image E(r)⃗
is the spatial convolution of the object O(r)⃗ with the system’s
impulse response S(r)⃗, also known as the point spread function
(PSF):

∫⃗ = ⃗ ⃗ − ⃗ · ⃗ ⃗E r r S r r O r M r t( ) d ( ) ( ) ( , )1 1 1 1 (1)

Within the SOFI technique M(r,⃗t) in eq 1 corresponds to the
time-dependent spatial distribution of light intensity emitted
by deeply subwavelength stochastically blinking fluorophores.
In our SODI adaptation of this technique, M(r,⃗t) corresponds
to the complex transmission function of a given subwave-
length-structured mask labeled with index t ∈ [1,Nt], where Nt
is the number of masks in a measurement set (also equal to the
number of images to be acquired during the experiment). We
start by considering the variance of the image. By denoting
⟨···⟩t to be a simple average over a collection of frames, we
obtain

∬⟨ ⃗ ⟩ − ⟨ ⃗ ⟩ = ⃗ ⃗ ⃗ − ⃗ ⃗ − ⃗ ⃗ ⃗

× ⟨ ⃗ ⃗ ⟩ − ⟨ ⃗ ⟩ ⟨ ⃗ ⟩

E r t E r t r r S r r S r r O r O r

M r t M r t M r t M r t

( , ) ( , ) d d ( ) ( ) ( ) ( )

( ( , ) ( , ) ( , ) ( , ) )

t t

t t t

2 2
1 2 1 2 1 2

1 2 1 2 (2)

In general, taking the square of the image does not result in a
higher-resolution image. It is a somewhat subtle point as, for
example, a squared grayscale image will appear to have
sharper/narrower boundaries; however, if two lines in such an
image appear as one, the same will be observed in the squared
image. To get higher resolution within the SOFI technique one
assumes that any two fluorophores blink independently. Then,
one can define the following averaging function over a time
period Δt and the corresponding orthogonality relation
between light intensities emitted by the two point-size
fluorophores:
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where C is assumed to be a spatially independent constant and
δ(r)⃗ is the delta function. With this orthogonality relation, the
reconstructed image (eq 2) becomes
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Since a PSF squared is narrower than the original PSF, one
will observe improvement in the image resolution. For
example, frequently, the PSF can be expressed as a Gaussian
of width σ:

σ
⃗ = − | |⃗

S r
r

( ) exp
2

2

2

i
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jjjj
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{
zzzz

(5)

Therefore, taking the square of that Gaussian yields another
Gaussian of a reduced width σ σ̃ = / 2 , thereby leading to an
improved resolution.
Similarly, within SODI, by judiciously designing a set of

mutually orthogonal masks and by properly choosing the frame
averaging operator ⟨···⟩t, we can obtain a higher-resolution
image reconstruction as will be demonstrated in the rest of this
section. In the following, we detail several design principles for
the construction of the optimal mask sets M(r,⃗t) for SODI
technique. First, we assume that the PSF has a bounded
support:

⃗ − ⃗ ⃗ − ⃗ = | ⃗ − ⃗ | >S r r S r r r r D( ) ( ) 0 if1 2 1 2 (6)

where D is the characteristic width of the PSF, which is
typically set by diffraction on the imaging optics and, thus, D ∝
λ. This also means that two features will be automatically
resolved if they are well separated in space by at least a distance
D or further (see the example of two Gaussian-like PSFs in
Figure 1a). In the case of the SOFI technique, it also means
that, to achieve resolution enhancement, one must require that
the emission from closely placed point-size fluorophores within
a distance D or closer to each other are uncorrelated. At the
same time, fluorophores that are positioned further than D
from each other will not affect resolution, even if they blink in
a correlated manner. In the case of the SODI technique, this
means that the mask orthogonality should only be forced
locally, within any spatial domain of characteristic size D, while
the same mask set does not have to be orthogonal over longer
distances:
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| ⃗ − ⃗ | <
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This realization leads to a significant reduction in the number
of required masks/frames to enable resolution enhancement.
Thus, a locally orthogonal mask set can be constructed using a
basic pixel group and then be periodically repeated to cover the

whole object under imaging. According to eq 7, the physical
size of the basic pixel group must be comparable to the PSF
size. Furthermore, we are not limited to using square tiling of
the basic pixel groups, as triangular or hexagonal tiling can also
be used to cover the two-dimensional plane (Figure 1b).
Note that the orthogonality definition given by eq 7 is

somewhat different from that used in eq 3. As we will see in the
following, we used eq 7 for pure phase masks, while eq 3 was
used later in the paper for amplitude masks.
Next, we consider digital masks that feature a small number

of pixels in the basic pixel group. This means that pixel
positions in the mask can accept a finite and discrete number
of values Nr, and we label individual pixels with an index r (see
Figure 1b). Then, the local orthogonality condition for the
digital masks (assuming periodic tiling of the basic pixel group
to cover the whole plane) can be, for example, expressed as
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=
=

≠
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where Nt is the total number of masks, t is the mask number,
while r1,r2 is the pixel numbers within the basic pixel group,
and C is a common constant that is independent of pixel
position. As we show later, we used the mask orthogonality
condition defined in eq 8 to design pure phase masks. Using a
mask set that satisfies eq 8, one must acquire Nt far-field images
E(r,⃗t) of the object covered by the different masks in this set.
Then, an image of the object with increased resolution can be
reconstructed using

∫∑⟨ ⃗ ⟩ = ⃗ = ⃗ ⃗ − ⃗ ⃗
=

E r t
N

E r t C r S r r O r( , )
1

( , ) d ( ) ( )t
t t

N
2

1

2
1

2
1

2
1

t

(9)

As in the SOFI technique, the resolution is improved
because the PSF is squared in eq 9. The mask set can be better

Figure 1. Super-resolution image reconstruction with deterministic
fluctuations. (a) Two features are resolved if they are separated in
space further away than the characteristic size D of the PSF spread
function. (b) Examples of basic pixel groups containing four square
pixels, six triangular pixels, and seven hexagonal pixels for periodic
tiling of the 2D plane. (c) Hadamard matrix used in the second-order
reconstruction. Here, different matrix rows define pixel values in the
basic pixel groups of different masks. (d) Basic pixel groups of the
eight masks based on the Hadamard basis and (e) corresponding
eight complete masks, where the basic pixel groups are periodically
tiled to cover the whole field-of-view.
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visualized using a matrix notation, where the matrix rows
correspond to the individual masks, the columns correspond to
the individual pixels in the basic pixel group, while the matrix
values are the corresponding M(r,t). For example, a locally
orthogonal set containing Nt = 2k pure phase masks can be
constructed using Hadamard matrix (Figure 1c), where the
columns are all mutually orthogonal vectors in the sense of eq
8. At the same time, we are not forced to use all the columns of
the Hadamard matrix to form a locally orthogonal set of masks,
so in fact, the number of pixels Nr in the basic pixel group can
be smaller than the number of masks Nt. At the same time,
using periodic tiling of the basic pixel set ensures that no
matter what pixel is chosen in the object plane, a thus designed
mask set will always be locally orthogonal in the sense of eq 8.
As an example, in Figure 1b, we show three different choices of
basic pixel groups that contain Nr = 4, 6, and 7 pixels that can
be tiled periodically to fill the 2D plane. Then using the
Hadamard matrix (Figure 1c), one can construct locally
orthogonal sets of Nt = 8 phase masks (with either 0 or π phase
shifts) containing Nr pixels in the corresponding basic pixel
group (Figure 1d). By tiling the basic pixel groups periodically
to fill the whole 2D plane, one arrives at a complete set of
locally orthogonal masks shown in Figure 1e. Finally, in order
to ensure that all pixels in a basic pixel set contribute equally to
the image reconstruction, we require that the constant C in eq
8 is the same for all the pixels in a given mask set. In other
words, this ensures that, on average, the object is uniformly
illuminated by the masks.

■ PURE PHASE MASKS
In Figure 2 we present experimental results of the SODI image
reconstruction measured using a THz time-domain imaging
system (see Supporting Information, A, for more details about

the experimental setup). As described in the previous section,
we used Hadamard basis (+1, −1) phase masks where the +1
and −1 elements were, respectively, obtained using phases of 0
and π (through the phase term exp(iϕ)). As an object, we use
a cutout in metal in the form of the fleur-de-lis (see Supporting
Information, B). As explained above, the eight frames are
formed using seven pixels derived from the Hadamard basis
arranged in a hexagonal lattice with an interpixel distance of 2
mm (Figure 2a). Knife-edge measurements revealed that the
PSF could be expressed as a Gaussian (eq 5) with a width
σ λ λ π= F D( ) 2 / , in accordance to the Gaussian beam
theory (see Supporting Information, C, for details). As
shown in Figure S3, the use of an interpixel distance of 2
mm ensured that 99% of the Gaussian PSF could fit in a circle
of radius 3σ surrounding the group of pixels. To realize the −1
element of the Hadamard basis, we use phase elements
fabricated by 3D printing hexagonal steps of height h using
PLA plastic of refractive index n ≈ 1.6. The incurred phase due
to passage through a step of thickness h is ϕ = 2π(n − 1)h/λ,
which indicates that, to obtain a phase difference of π at 0.32
THz (λ ≈ 0.94 mm), we must use h = 800 μm. In Figure S2b
of the Supporting Information, B, we show eight phase masks
that correspond to eight rows of the Hadamard basis/matrix.
We then use THz time-domain spectroscopy for both

amplitude and phase super-resolution image reconstruction. In
this system, broadband THz pulses are generated and detected
by photoconductive antennas to obtain both amplitude and
phase images at several frequencies. In particular, for every
mask in the 8 mask set, we place the given phase mask on top
of the object and then image the pair using raster scanning in
the focal plane between two parabolic mirrors (see Supporting
Information, A, and Figure S1 for more details). In Figure 2b,
we show amplitude images of the resulting interference

Figure 2. Second order image reconstruction using phase masks based on the Hadamard basis. (a) Basic pixel groups of each mask. (b) Amplitude
and (c) phase of the corresponding measured frames. (d) Amplitude (top) and phase (bottom) of the original image, (e) the super-resolution

reconstruction using ⟨E2⟩ and (f) ⟨ ⟩E2 images. (g) Linear section of the amplitude (top) and phase (bottom) distributions along the line where
the three leaves meet. Scale bar size is 5 mm.
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patterns, while in Figure 2c the corresponding phase
distributions are presented. Next, following eq 9, we compute
the super-resolved image by taking the average of the squares
of the complex fields from each measurement ⟨E2(r,⃗t)⟩. We
note that we average the complex fields squared and not the
intensities, which allows us to retrieve super-resolved images of
both amplitude and phase distributions. The original image
amplitude and phase are shown in Figure 2d, while our SODI
images are shown in Figure 2e,f, where we present both

⟨E2(r,⃗t)⟩, and ⟨ ⃗ ⟩E r t( , )2 distributions. We note that

⟨ ⃗ ⟩E r t( , )2 preserves the same intensity contrast as the
original image, while providing better resolution than the
original image. Finally, to better see the effect of our algorithm
on the resolution, we plot the amplitude and phase cross
sections along a line in the image where the three leaves meet.
In the original image, the three leaves can hardly be
distinguished, while in the super-resolved amplitude and
phase images, they are clearly resolvable.

■ BINARY AMPLITUDE MASKS

In the previous section, we detailed second order SODI
technique using a set of pure phase masks based on Hadamard
orthogonal basis. In this section, we detail an alternate second-
order SODI reconstruction that uses binary amplitude masks
that are also related to the Hadamard basis. The case of binary
amplitude masks is important as it can be efficiently realized
using THz amplitude spatial light modulators based on
dynamic photomodulated masks.12−14

We now demonstrate how starting from the Hadamard basis
that contains +1 and −1 elements (Figure 1c), we can modify
the SODI technique and derive an orthogonal set of amplitude
masks that contains only 0 and 1 elements and features ∼50%
light transmission through each mask. The 0 and 1 elements
can be interpreted as opaque and transparent regions of a
binary amplitude mask, and they can be realized experimentally
as cutouts in an otherwise nontransparent metal foil.
Particularly, one can show that by simply replacing the −1
elements by 0 in the Hadamard basis of size Nt and after
omitting the first column of 1’s, we arrive at a set of Nt binary
amplitude masks ⟨ ⃗M r t( , )1 each containing Nr = Nt − 1 pixels
that are locally orthogonal in the following sense:
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where the constant C = 3/4 for the binary amplitude mask set
derived from the Hadamard basis of any order Nt.
The SODI technique modified for amplitude mask sets then

requires a subtraction of the squared mean of the measured
electric field from the mean of the square of the electric field,
where averaging is performed over the set of Nt amplitude
masks:
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∬
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It is important to mention that the orthogonality condition
at eq 10 is different from the usual orthogonality condition
used for the phase masks (eq 8). In addition to be compatible
with binary amplitude masks, the case described in this section
indicates that there is no restriction in the definition of the
super-resolution algorithm. In principle, one can use any
function of the measured frames as long as the corresponding
orthogonality is respected with the appropriate mask set.
Moreover, the choice we made here is not unique for binary
amplitude masks. For example, one could use the usual
orthogonality condition (eq 8) and measure two sets of
Hadamard matrices (one positive, where −1s are transformed
to 0s and one negative where 1s are transformed to 0s). Then,
the two sets should be subtracted before applying the SODI
algorithm (eq 9).12 Compared to the solution presented in this
section (eq 10), this technique would have essentially doubled
the number of measurements, as one would need to measure
the positive Hadamard mask set separately from the negative
one.
In Figure 3, we present experimental results of the SODI

reconstruction using binary amplitude masks derived from the

Hadamard basis (Figure 3a). Measured at 0.32 THz amplitude
and phase distributions for a fleur-de-lis image superimposed
with different masks are shown in Figure 3b and c, respectively.
The amplitude of the original image and its corresponding
super-resolution reconstruction are shown in Figure 3d at
various frequencies from 0.27 to 0.42 THz. The SODI images

Figure 3. Second order image reconstruction using binary amplitude
masks constructed using a modified Hadamard basis. (a) Basic pixel
groups in each mask. (b) Amplitude and (c) phase of the
corresponding measured frames. (d) Comparison of the amplitude
of the original images (top) and their corresponding super-resolution
reconstructions using complex electric field (bottom) at different
frequencies and (e) when considering only the maximum electric field
peak value in time domain. The super-resolution reconstructions of
the phase are shown in Supporting Information, D. Scale bar size is 5
mm.
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for the reconstructed phases are shown in Supporting
Information, D. Unlike the phase masks, which are designed
to operate at a specific THz frequency (since the phase of the
underlying phase element is frequency dependent), the SODI
reconstruction using amplitude mask sets can be performed
over a larger bandwidth. However, when increasing the THz
frequency, we start observing artifacts in the reconstruction
image in the form of multiple dots (high spatial frequency
noise). These appear because the PSF size at higher
frequencies becomes smaller than the size of the basic pixel
group of the patterned mask; therefore, the local orthogonality
condition between blinking patterns of the individual pixels, eq
10, might not hold anymore due to partial overlap of the PSF
spatial support with the individual pixels. To study in more
details the observed numerical artifacts, we performed
additional numerical simulations that are presented in
Supporting Information, E.
Finally, although in our experiments we used a THz-TDS

imaging system and were, therefore, capable of super-resolving
both amplitude and phase distributions, the SODI technique is
not restricted to coherent measurements and it can be
performed using field intensities instead of electric fields.
Indeed, our super-resolution algorithm does not specify the
nature of the frames E(r,⃗t). As long as the image can be
represented as the convolution of some measurand with a
given PSF (eq 1), the SODI algorithm can be applied. For
example, in Figure 3e, we show SODI reconstruction using the
maximum amplitude value of the peak THz electric field in
time domain. This measurand is often used to reconstruct THz
images, as it provides rapid images without the need to move
the optical delay line of the THz-TDS system.14 Again, we
observe the resolution improvement using only the peak THz
electric field.
In the previous sections, we showed two ways to perform the

SODI reconstruction using phase and binary amplitude masks.
In general, phase masks are preferable since they allow a
complete transmission of light while binary amplitude masks
block a portion of it. However, the choice of either using
amplitude or phase masks is mostly determined by the
practical ability to easily create and shuffle such masks. We
discuss more in detail the available options later.

■ SUPER-RESOLUTION RECONSTRUCTION USING
DETERMINISTIC FLUCTUATIONS, HIGHER ORDER
FORMULATION

In the previous sections, we have detailed the second order
SODI algorithm for image resolution enhancement. Naturally,
one can construct higher order super-resolution schemes by
using higher moments in the definition of the algorithm. In the
following, we present one possible formulation that is most
applicable to the case of phase masks. Particularly, for the nth-
order algorithm, one needs to calculate:
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The local orthogonality condition for a given mask set can be
defined as
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where M(r,⃗t) is considered a vector of size Nt with elements
that describe changing optical properties over time of a fixed
pixel/fluorophore located at position r.⃗ Then, the recon-
structed image is convoluted with the nth power of the PSF:

∬⟨ ⃗ ⟩ = ⃗ ⃗ − ⃗ ⃗E r t r S r r O r( , ) d ( ) ( )n
t

n n
1 1 1 (14)

As previously, considering a Gaussian PSF of width σ (eq 5),
taking it to the nth power results in another Gaussian with a
reduced width σ σ̃ = n/ , thus, leading to an improved
resolution.
Finding a basis that respects the orthogonality condition eq

14 for a general order n is not trivial. An obvious choice for any
order n is the identity matrix, the columns of which form
“blinking” patterns M(r,⃗t) of artificial fluorophores. This
choice, however, results in binary amplitude masks with very
low transmission efficiency, as only one pixel in the basic pixel
group is 1 (transmitting), while all the other pixels are 0
(blocking the light). This resulting mask set corresponds to a
subwavelength aperture successively scanning the object pixel
by pixel. Moreover, following Bethe’s study of diffraction by a
circular hole,24,25 the transmitted electric field decreases with
the third power of the aperture size, thus, significantly
decreasing the overall signal-to-noise ratio of the measure-
ments. In contrast, light transmission through pure phase
masks is significantly more efficient, as was demonstrated in
Pure Phase Masks when using, for example, a Hadamard basis.
Therefore, when increasing the order of the SODI method,
one is interested in using mask sets with high light
transmission. Additionally, for convenience of the mask
fabrication, we seek to use either pure phase or binary
amplitude masks.
It is important to mention that the mask orthogonality

condition defined by eq 13 is not the traditional definition of
an orthogonal basis set, which requires that the scalar product
between any two distinct vectors in a set is zero. In fact, for the
SODI method of order n, an orthogonal basis set in the sense
of eq 13 requires that the convolution of any n vectors in a set,
among which at least two are different to be equal to zero. To
the best of our knowledge, the problem of finding orthogonal
basis for higher order orthogonality definition in this sense is
still an open problem that does not have a general solution.
Finally, we note that higher order super-resolution recon-
struction formulations that are alternative to eq 12 can be
formulated as one only needs a certain general orthogonality
condition between the individual blinking patterns of spatially
distinct pixels, while the main advantage of eq 12 is its
simplicity.
In what follows, we present some particular solutions that we

found for the problem of high-order orthogonal basis sets in
the sense of eq 13. We first present a solution for the third
order orthogonal basis set containing any desired number of Nr
vectors (number of pixels in the basis pixel group). An example
of a fourth-order orthogonal basis set can be found in
Supporting Information, F. As discussed earlier, temporal
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changes in the optical properties of a fluorophore (artificial
blinker) located at position r ⃗ are described by the function
M(r,⃗t). By limiting ourselves to a finite group of Nr pixels in the
basic pixel group and considering only Nt temporal snapshots
(number of masks), we adopt a matrix notation where M is a
rectangular matrix of dimensions Nt × Nr, where the rows
correspond to the different time frames, while the columns
correspond to the different pixels. Consider now n columns of
the matrix M with column indices r1, r2, ..., rn. The
orthogonality relation of the nth-order (eq 13) can then be
written as
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To verify the nth order orthogonality condition of eq 15 for a
given matrix of size Nt × Nr, one should compute the Nr

n

possible combinations of vector multiplications to ensure that
it is always equal to 0, except when all the indices are equal. In
fact, due to the commutative property of the product defined
in eq 15, the number of distinct multiplications is significantly

smaller and can be shown to be equal to ∼+ − !
! − ! !
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For the third order orthogonality condition, we found a pure
phase basis set for any number of pixels Nr. The matrix with
columns made of basis vectors is constructed by concatenation
of the three following matrices. By denoting IN to be the
identity matrix of size N and by denoting ON×M to be the
matrix of size N × M with every element equal to one, the
three matrices can be written as
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The matrix of size (4Nr − 6) × Nr resulting from the
concatenation of these three matrices along the temporal
dimension forms a third order orthogonal basis in the sense of
(eq 15). Compared to the Hadamard basis, this solution
contains four different phase elements, {+1, +i, −1, −i}, that
can be obtained using a mask with respective phases

{ }ππ π0, , ,
2

3
2

. For example, using the same 3D printed

phase mask demonstrated previously (at 0.32 THz), the
respective thicknesses would be {0, 400, 800, 1200} μm. The
number of required frames is a function of the number of
pixels: Nt = 4Nr − 6. However, one can see that all the pixels in
the last 2(Nr − 3) frames are constituted of −1 elements.
Therefore, one can in principle measure it only once and reuse
it 2(Nr − 3) times when taking the average. The smallest
number of required frames/masks would then be Nt = 2Nr + 1.
We show in Figure 4a an example of such a basis made of Nr

= 4 vectors (number of pixels in the basic pixel group), each
containing Nr = 4 elements (number of masks in the mask set).
To demonstrate that this basis set respects the third order
orthogonality condition, we compute the 20 distinct
combinations of vectors entering the definition (eq 15), with
n = 3. As we can see in Figure 4b, the 20 possible

multiplications always yield 0, except in the four cases when
all the three vectors are identical. We then arrange the four
pixels that make the basic pixel group into a 2 × 2 square tile
and repeat it periodically, which results in 10 distinct masks
shown in Figure 4c.
In Figure 4e−m, we numerically compare different orders of

reconstruction of a 45 × 45 mm object in the form of a
snowflake cutout (Figure 4d). The convolution of the object
with a Gaussian PSF of width σ = 1 mm (as defined in eq 7) is
shown in Figure 4e. To apply the SODI algorithm, we consider
the basic pixel group of Nr = 16 pixels arranged in a 4 × 4
square tile, with the diagonal equal to 6σ, which comprises
99.7% of the Gaussian PSF. The square tiles are then
periodically patterned to cover the whole object. For a given
order of the SODI reconstruction algorithm, we then choose
an appropriate orthogonal basis set and the corresponding set
of masks. We then compute the convolution of the masks with
the object and the Gaussian PSF using eq 1. Finally, to obtain
higher-resolution images, we compute the nth order SODI
reconstruction using [eq 14]. The result for order 2 is obtained
with a Hadamard basis of Nt = Nr = 16 phase masks (Figure
4f), while the result for order 3 is constructed using the matrix
described by eq 16 with Nt = (2Nr + 1) = 33 phase masks
(Figure 4g). To clearly demonstrate the necessity of using the

Figure 4. Higher order image reconstruction. (a) Third order
orthogonal basis set (see eq 16) with Nr = 4 vectors (number of pixels
in the basic pixel group). (b) The third order orthogonality relation
⟨M(r1,t)M(r2,t)M(r3,t)⟩t = 0 is observed when at least one of the
vectors is different from the others. (c) 10 locally orthogonal phase
masks that correspond to the third order orthogonal basis resulting
from periodic patterning of the plane with 2 × 2 square tiles. (d)
Object representing a snowflake cutout and (e) original image
obtained by convolution with a Gaussian PSF of width σ = 1 mm. (f−
n) Super-resolution reconstruction of different orders: (f) Order 2
with Hadamard basis (16 phase masks); (g) Order 3 following eq 16
(33 phase masks); (h) Order 3 with random phase masks to show the
importance of using locally orthogonal mask sets (33 masks); (i)
Order 4 with the pure phase basis detailed in Supporting Information,
F (256 phase masks); (j) Order 5; (k) Order 6; (l) Order 7; (m)
Order 8 with an identity matrix as a basis set (16 binary amplitude
masks in the form of a subwavelength aperture). Scale bar size is 5
mm.
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orthogonal basis sets for super-resolution image reconstruc-
tion, in Figure 4h, we present a third order reconstruction
using random phase matrices instead of the orthogonal ones,
clearly the resultant reconstruction is incorrect. For order 4 in
Figure 4i, we use the fourth order orthogonal phase-only basis
set that we detail in the Supporting Information, F, with 256
phase masks. Finally, the results for orders 5 to 8 are obtained
using a basis set in the form of an identity matrix that
corresponds to successive scanning of the object with a
subwavelength aperture of size equal to the size of the single
pixel (16 amplitude masks).
As one can see, the resolution of the snowflake improves

when increasing the order n. However, there is a limit in the
improvement, as seen in Figure 4j−m. Artifacts in the
reconstruction in the form of discrete dots start to appear
when the size of the single pixel in the basic pixel group
becomes larger than the width of the nth-power PSF σ n/ . To
avoid this problem, one could reduce the size of the individual
pixels used in the mask definition at the expense of increasing
the number of masks/frames necessary for image reconstruc-
tion.
Mathematically speaking, in principle, there is no limit in the

achievable resolution when increasing the order n and
decreasing the size of the subpixels. The reason is that when
the individual fluorophores are infinitesimally small, they can
be considered as delta functions. Then, the SODI reconstruc-
tion integral is exact regardless of the reconstruction order n.
Of course, for various physical reasons, this mathematical
observation cannot be practically achieved. First, there is a
minimal size of the fluorophores. This is, of course, limited by
the available physical techniques to realize the masks. Also, by
decreasing the size of the fluorophores, one increases the
necessary frames for the reconstruction. In the limit when the
masks are infinitesimal, the reconstruction time becomes
infinite. Moreover, the masks must be extremely close to the
object (this is the meaning of the multiplication between the
object O(r)⃗ and the masks M(r,⃗t) in eq 1). In reality, there is
always a finite distance between the two that results in
diffraction effects and reduced resolution. Finally, our
mathematical approach does not include any noise contribu-
tion. In practice, these impose a practical limit to the
measurable signals.

■ DISCUSSION

We now comment on the possibility of using the SODI
technique with other imaging modalities developed in the THz
range. First and foremost, the SODI technique supposes a
linear imaging system, i.e. the image can be represented as the
convolution of the object with a point spread function (see eq
1). Fortunately, most of THz imaging systems fulfill this
requirement. As we discussed earlier, the SODI algorithm
improves the resolution of existing imaging systems by a factor
of n , where n is the order of the SODI reconstruction. This is
achieved by reducing the PSF width to σ σ̃ = n/ . One can
define the resolution as the full width at half-maximum (fwhm)
of the underlying Gaussian PSF of eq 5. Two points are
resolvable if their distance is greater than σ=fwhm 2 2 ln 2 .
For example, in our proof of concept, we used a THz time-
domain spectroscopy system, and the image was obtained by
displacing the object in the focal plane. With our simple
diffraction-limited experiment with regular focusing optics (F =
1 0 1 . 6 mm a n d D = 1 0 1 . 6 mm ) , w e h a d

σ λ π λ= =F D2 / /1.11 (as confirmed by knife-edge meas-
urements in Supporting Information, C). At 0.32 THz, this
corresponded to σ = 0.844 mm and fwhm = 1.9875 mm.
Therefore, two features separated by ∼2 mm were initially
resolvable (diffraction limit). After performing the SODI
algorithm at n = 2 order, the new width was
σ σ λ̃ = =n/ /1.6, which corresponded to σ = 0.5968 mm
and fwhm = 1.4054 mm at 0.32 THz. Therefore, using the
SODI algorithm, two features separated by ∼1.4 mm were
resolvable, beating the diffraction limit.
In a similar manner, the SODI algorithm can be applied to

other THz imaging modalities to improve the resolution. In
practice, the SODI technique has two main experimental
requirements: the blinking masks and the imaging system itself.
The nature of the masks is an important requirement in the

SODI technique. Super-resolution techniques developed in the
visible range use fluorophores that blink in an on/off fashion
(either light is emitted or not). Under our mathematical
framework, this type of blinking is referred to as binary
amplitude masks and are constituted of 0 and 1 elements in
their matrix representation. In the THz range, as we showed in
our experimental demonstration, this type of masks can be
fabricated using transparent cutouts in an opaque material (for
example, metal). In general, however, the blinking can also
occur in the phase. This type of phase blinking can be
represented by matrix with complex elements ui related to the
phase ui = exp(jϕi), as we showed earlier. The choice of either
using amplitude or phase masks depends largely on the
possibility of easily creating and shuffling such masks.
However, phase masks are preferable because they allow
higher light throughput, while binary amplitude masks can
block a significant portion of it.
Another important requirement is that the masks need to be

positioned in the near-field region. In visible SOFI, this
requirement is automatically satisfied because the blinking
fluorophores are chemically attached to specific molecules in
the target object. Therefore, it is important for the artificial
blinking fluorophores of the SODI technique to have the same
property and be as close as possible to the object. In eq 1, this
is the meaning of the direct product between the object O(r)⃗
and the mask function M(r,⃗t). If the samples are not exactly in
the near-field region, eq 1 must be somehow modified to
consider the diffraction effect of the masks on the outgoing
light, leading to a decrease in the spatial resolution.
In our demonstration, we placed physical masks (3D-printed

phase masks and metallic binary masks) in direct contact with
the object. In general, such masks are not desirable because of
the need to manually position them, thus leading to increased
acquisition times. Fortunately, many methods to spatially
modulate the THz beam have been demonstrated in the
literature26 especially in the context of single-pixel imaging and
compressive sensing. For example, mounting the metallic
masks on a spinning disk would ensure a rapid mask
shuffling.27 To forego completely the use of moving
components, one can spatially modulate the THz beam in
amplitude and/or in phase using active metamaterials,28,29

micromirror arrays30 or liquid crystals.31−33 In addition to
allowing rapid mask shuffling, these techniques allow the
desired masks to be directly patterned in the incident beam,
thus, forgoing the need to physically contact the object with
the masks.
Another promising setup would be to place the object on a

semiconductor substrate. Then, the different binary amplitude

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://dx.doi.org/10.1021/acsphotonics.0c00711
ACS Photonics 2020, 7, 1866−1875

1873

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c00711/suppl_file/ph0c00711_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.0c00711/suppl_file/ph0c00711_si_001.pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://dx.doi.org/10.1021/acsphotonics.0c00711?ref=pdf


masks could be optically pumped using a digital micromirror
device.13 Because the optical illumination is deeply sub-
wavelength (compared to the THz wavelength) and by using
very thin semiconductor wafers, very small pixels can be
achieved. For example, a resolution of λ/45 at 0.75 THz was
obtained using a compressed sensing approach.23 Using the
SODI technique, this resolution could be further improved.
Our proof of concept used a transmission geometry, while a

reflection configuration is also possible for the SODI
algorithm. Three-dimensional imaging can also be done
using approaches similar to those used in visible SOFI.17,34

In principle, the SODI algorithm can be used with near-field
imaging systems3 that use apertures4 and tips.5 However, in
that case, because the obtained resolutions are already
ultrasubwavelength (for example, 2 nm, λ/1500005), the
masks that need to be used must also be ultrasubwavelength,
which is hard to accomplish in practice.
Our algorithm can also be used with single-pixel detectors

and compressive sensing. In single-pixel imaging, the image is
obtained by successively measuring the object illuminated by a
set of masks and reconstructed using an inverse matrix
operation or a minimization approach.2 To apply the SODI
algorithm, one would need to first independently reconstruct
Nt frames using the classical single-pixel imaging theory, and
then use the SODI equation. This is interesting because
subwavelength resolutions have already been demonstrated in
THz compressed sensing (for example λ/4523) using an
optically pumped semiconductor wafer as discussed above.
The SODI algorithm could then be used in conjunction with
single-pixel imaging and compressed sensing to increase the
resolution further.
In the approaches discussed above, the image is constructed

using a sequential set of measurements, either pixel-by-pixel in
raster scans or mask-by-mask in single-pixel imaging, thus
resulting in increased acquisition times. Interestingly, the
SODI approach can be used with THz cameras that capture
the full image in a parallel manner using array detectors.19,20

Therefore, one could envision that the SODI algorithm could
be used with THz microscopes using similar setups than those
developed in the visible range. Borrowing ideas discussed
above, the object could be deposited on a thin semiconductor
substrate. Using optical pumping and a digital micromirror
device, the different binary masks could be successively
projected on the semiconductor. Of course, this would come
at the expense of the framerate, because Nt frames are required
to reconstruct a SODI image. However, using a photo-
illuminated semiconductor substrate would give flexibility to
rapidly change between a low-resolution high-framerate mode
(without SODI) to a high-resolution low-framerate mode
(with SODI).

■ CONCLUSION
In this paper, we detailed a novel Super-resolution Orthogonal
Deterministic Imaging (SODI) technique and demonstrated
its application in the THz spectral range. This computational
imaging technique is inspired by the Super-resolution Optical
Fluctuation Imaging (SOFI) that utilizes stochastic fluctua-
tions in the intensity of the fluorophores integrated into the
image under study. However, as there are no natural
fluorophores in the THz spectral range, we substitute them
by artificial blinkers in the form of judiciously and optimally
constructed phase or binary amplitude mask sets. Starting from
the equation of linear imaging systems, we find that it is

possible to construct super-resolution images using highly
transmissive (over 40% throughput) locally orthogonal mask
sets. We experimentally demonstrated pure phase mask sets
and binary amplitude mask sets resulting in a second order
super-resolution reconstruction by processing only 8 images.
We also showed how to extend the SODI algorithm to higher
orders by using the concept of higher order mask
orthogonality. We then numerically demonstrated solutions
for the third and fourth order reconstructions using highly
transmissive phase masks.
We believe that this work opens new possibilities in THz

subwavelength imaging. Using the equation for linear imaging
systems (eq 1), together with spatial modulation of the phase
or amplitude of the THz wave, our methodology can already
be applied in different imaging scenarios. For example, it can
be directly translated to single-pixel imaging by modifying the
photomodulated illumination masks.12−14 Moreover, as we
demonstrated experimentally, this technique can be used with
incoherent measurements, which opens up new possibilities for
subwavelength imaging using commercially available THz
thermal cameras and THz field-effect transistor-based cameras.
Finally, this work can be of interest to a larger optical
community interested in other wavelengths, as it provides a
clear theoretical framework for structuring illumination at a
subwavelength scale using optimal phase and amplitude mask
sets in order to improve image resolution beyond the
diffraction limit.
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