

Enhancement Of Indium Tin Oxide Nano-Scale Films For Terahertz Device Applications Treated By Rapid Thermal Annealing

Anup Kumar Sahoo¹, Chia-Ming Mai¹ and Ci-Ling Pan^{1*}

¹National Tsing Hua University, Hsinchu City, 30013, Taiwan

*Corresponding author: Prof. Ci-Ling Pan (e-mail: <u>clpan@phys.nthu.edu.tw</u>)

Motivation

Introduction

- terahertz Evaluated (THz) the optical and electrical properties of ITO nano-thick film treated by RTA Displayed the THz transmittance of different thickness ITO film. The ITO film can be functioned as a THz reflective conductive electrodes by RTA at 600°C Enhanced THz power transmittance from 6 to 49 % at 0.2 THz by RTA at 800°C.
- **THz-TCEs:** poly(3,4-ethylenedioxythiophene) graphene, polystyrene sulfonate and (PEDOT: PSS). **THz-TCEs:** Drawbacks in conductivity and lithography process ITO or Metal finger type pattern: highly sensitive to polarization
- **Requirement:** polarization insensitive, highly conductive and THz transparent electrode for tunable THz devices, Ex. LC-SLM.
- Perhaps, RTA is one of simple way to produce highly efficient either transparent or reflectance electrode.

Result and discussions

Frequency (THz) (a) 0.2 0.4 0.8 1.0 0.6 0.2 10.0kV X20.000 WD 10.6mm Frequency (THz) Conclusions References We showed that ITO nano films RTA-annealed at 600°C and 800°C are suitable as perfect absorbers and half-mirrors or electrodes, respectively. Analyzed electrical properties of as-deposited and RTA treated by using Drude model.

The annealing condition further need to be optimizing for enhancing THz transmittance in the frequency range of 0.2-1.2 THz.

[1] A. K. Sahoo et al., "Liquid Crystal Based Terahertz Spatial Light Modulator for Imaging Application," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Japan, 2018, pp. 1-2. [2] Z. Shi, L. Song and T. Zhang, "Terahertz reflection and visible light transmission of ITO films affected by annealing temperature and applied in metamaterial absorber" Vaccum vol. 149, pp. 12-18, 2018. [3] C.-W. Chen et al., "Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide from the Visible to the Far- Infared," IEEE J. Quantum Electron., vol. 46, pp. 1746-1754, 2010.. [4] J.-W. Shi *et al.*, "Millimeter-wave photonic wireless links for very-high data rate communication," NPG Asia Mater., vol. 3, pp. 41–48, 2011.

0.4

0.6

Frequency (THz)

0.8 1.0